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Validity of using Two Numerical Analysis Techniques to
Estimate Item and Ability Parameters via MMLE: Gauss-Hermite
Ouadrature formula and Mislevy's Histogram Solution.

Abstract

MMLE employs a numerical analysis technique to integrate

examinee's abilities over the ability distribution for item and

ability parameter estimations because of the difficulty of dircct

integration with a digital computer. For integrating ability,

the values of quadrature points and the weights corresponding to

each quadrature point are specified. The Gauss-Hermite

quadrature formula and the Mislevy's histogram solution have been

used for numerical integration over the normal density function.

This study found that the Gauss-Hermite quadrature formula

and the Mislevy's graphical solution via MMLE estimated item and

ability parameters equally when the large number vi quadrature

points were specified. When the small number of quadrature

points are specified, the Mislevy's histogram solution via MMLE

approach estimated item and ability parameters more accurately

than the Gauss-Hermite quadrature formula.
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I. Introduction

There are many procedures to estimate item and ability

parameters. Birnbaum's Joint estimation paradigm (1968) has been

the standard procedure for the maximuti lihelihood estimation of

item and ability parameters. Because of the incidential and

structural problem in JMLE, Bock and Lieberman (1970) proposed

marginal maximum likelihood estimation (MMLE) to remove the

effect of incidental parameters by integrating over the ability

distribution.

MMLE employs a numerical analysis technique to integrate

examinee's abilities over the ability distribution because of the

difficulty of direct integration with a digital computer. Under

the numerical analysis theory, the problem of finding the sum of

the area under the continuous curve is replaced by the simpler

problem of finding the sum of the areas of a finite number of

quadratures which approximate the area under the curve.

The MMLE approach and a numerical analysis theory have been

implemented in the BILOG computer program (Mislevy and Bock,

1982, 1984, 1986). For integrating ability, the number of

quadrature points, the values of quadrature points, and the

weights corresponding to each quadrature point are specified.

The Gauss-Hermite quadrature formula has been used for numerical

integration over the normal density function. The table, due to

Stroud and Secret (1966), for quadrature points and weights are

used in the MMLE approach (Bock & Aitkin, 1981; Bock & Lieberman,
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1970; Mislevy, 1984). The BILOG computer program does not

actually provide the quadrature points and weights yielded by the

Gauss-Hermite formula. The quadrature points and weights

provided as the default values for normal density function in

BILOG are based upon the graphical solution which is called

Mislevy's histogram solution (Mislevy & Stocking, 1989).

Seong (in press) found that increasing the number of

quadrautre point improves the accuracy of estimation for item and

ability parameter with a large data set when prior ability

distributions were matched to underlying ability distributions.

This study investigated similarity of item and ability parameter

estimations of using above two numerical analysis techniques via

MMLE with a large data set after changing the number of

quadrature points.

II. Theory

An approximate integration is used when we are solving a

functional equation for an unknown function that appears in the

integrand of some integral and we are confronted with the problem

of integrating experimental data. In a numerical analysis, an

integral is approximated by a linear combination of the value of

the integrand.

fba
w(x)f(x)dx cc E A(x

i
)f(x ).

i=1
(1)

x1, x
2
,..x

I
...x

h are points or abscissas usually chosen so as to
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lie in the interval of integration. These are called the nodes

or quadrature points. A(x1), A(x2),..A(xi)... ..A(xn) are

called weights or coefficients corresponding to quadrature

points. The right side of the above equation is frequently

called a rule of approximate integration, or quadrature formula

or quadrature rule. A quadrature formula usually occurs in

families depending upon a parameter such as the spacing between

the integrand quadrature points or the number of the these

points. With arbitrary nodes, formula (1) will be exact for all

polynomial of degree 5 n-1.

The great mathematician Karl Friedrich Gauss (1866)

discovered that the accuracy of the numerical integration process

could be greatly increased for the special case w(x) = 1 by a

special placement of the nodes. The quadrature formulas that

arise through application of his theorem are called Gaussian

quadrature formulas.

Gauss-Hermite quadrature Formula

There is a large family of numerical integrations that

confirm to following pattern of the formula (1).

For using the above formula, it is only necessary to know the

"quadrature points" x1, x21..xil...xn and "weights" A(x1),

A(x2),.. A(x/),...A(xn). Gauss's remarkable results is given

below (see Cheney & Kincaid, 1985 pp 192 for details):

Let q be a polynomial of degree n such that

q(x)xi dx = 0 i=011,....n-1 (2)

a

4



Let xl, x2..!'i...xn be the roots of q. Then the formula (1)

with these x
i
's as nodes will be exact for all polynomials of

degree .1 2n-1. With Gaussian nodes, the formula will be exact

for all polynomials of degree .1 2n-1. The quadrature formulas

that arise as applications of this theorem are called Gaussian

quadrature formula. There is a different formula for each

interval (a, b) and each of n. There is also more general

Gaussian formula to give appropriate values of integrals such as

ao -x 1 oo -x2
f(x)e dx, f(x)(1-x2) dx, f(x)e dx, etc.

0 a -03

Over the doubly infinite interval (-0 < x < 0), a frequently

used weighing function is of the form

a2 x2

w(x) = e (3)

Quadrature formula with above function is

2 2
+

co a x
w(x)f(x)dx = e f(x)dx c: E H.f(x.) E. (4)

-0 1=1

Hermite provided the relevant orthogonal polynomial equation

to compute the nodes when m =1 or a =% (see Hildebrand, 1956, pp

277 ior details). Hermite's orthogonal polynomial equation is

given below:

n x
2 n0 -x

2

H
n

(x ) = (-1) e (e ) = 0 (5)
axn

where n is the number of nodes (quadrature points).

The first four of the polynomials defined by Equation (5)

calculate the values of the nodes as shown below:
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H0(x) =1

H
1
(x )=2x xi= 0,

H
2
(x )=4x 2

-2 x = t 1/4",

H
3
(x )=3x

3
-12x x = t 13/2 and 0.

These values are given in the Stroud and Secrest's (1966) Table

5. Hermite's equation to compute weight corresponding each node

is (see Hildebrand, 1956, pp 277 for details):

2
n+1 n! PT

H
n

[Hn+1 (x )] .

(6)

When there are two nodes, the equation for computing the weights

is
23 2!

H2 =
[H

3
(x )] .

The weights corresponding two nodes are ± 47/2. When there are

three nodes, the weights are t/7/6 and 2,67/3. These values of

weights are given in the Stroud and Secrest's Table 5 (1966).

From the Equation (4),

-

a

e f(x)dx E Hif(xl) + E.
03 1=1

The quadrature formula of a normal function is

1 -x2/2
e g(x)dx E H.g(x.) + E.

TI2E i=1
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Let x = y, dx = dy.

1 -x2/2
e g(x)dx =

127 -40

ver -y2
e g(rTy)dy

-0)

1 -y2

e g(Sriwy)dy. (8)
16E. 0:0

Let /Ty = J(y) and h = gi,

1 -x2/2 1 -y2
e g(x)dx = e g(j(y)]dy

IR -co irt

1

e h(y)dy
-co

1 n
E H h(xl)

04; 1=1 '

1 n
E H. g(/ 'x .)

OSP 1=1 I

n 1
= E Hi g (12-x )

1=1 rf it
(9)

n
= E Hmg(xi).

i=1
1

From the above equation, = Ht, and Tcl = IT x .

The nodes of the normal function are obtained by multiplying the

Stroud and Secrest's Table 5 values by IT. The weights of the

normal function are obtained by dividing the Stroud and Secrest'

Table 5 values by r.
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mislevy's histogram solution

Under a normal distribution, the ability scale is restricted

from -4 to +4 and the ability interval is divided into (n-1)

numbers of rectangles having equal ability space. n indicated a

specified number of quadrature points. It produces the specified

number of quadrature points.

The normal probability density functions at each Xi, f(xi),

are computed and then multiplied by the equal space, which is the

width of the rectangle. These are values of weights, A(X1). The

sum of these weights values is 1. When the sum of the weights is

not exactly equal to 1 because of rounding error. The weights

are divided by the sum of the weights to make that sum of the

weights equal to 1. The default values of quadrature and weights

satisfy three conditions for numerical integration of the normal

distribution which are EA(X1) = 1, EXiA(Xi) = 0, and EX!' A(Xi)

= 1.

III. Method

Data

Simulated item response vectors (1,0) for 1,000 examinees

were generated by the GENIRV computer program (Baker, 1978). The

program requires an user to specify the number of items in a

test, the values of item parameters, the sample size, and the

type of underlying ability distribution. A test of 45 items was

used in the present study because this number of items was large

enough to yield stable results. Item parameters of the 45-items
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for generating item response vectors under the two-parameter

normal ogive ICC model were randomly chosen from within each cell

of Table 1. Thirty one ability groups were used for the normally

distributed 1,000 examinee data because these groupings and

numbers of examinees yielded a good match to the normal ability

distributions.

(Insert Table 1 about here]

Item and Ability Parameter Estimation

The generated data set was analyzed via the micro computer'

version of the BILOG (PC-BILOG version 1.1) program (Mislevy &

Bock, 1986) specifying the number of the quadrature points, the

values, and the weights. Most of the program default values were

used except the number of quadrature points, the values of the

quadrature points, and weights corresponding to each quadrature

point by the Gauss-Hermite quadrature formula and the Mislevy's

histogram solution. The number of the quadrature points for this

study were 10, 20, 30, and 40.

For ability estimation, the Bayesian expected a posterior

estimation (EAP) was chosen because no other estimator has

smaller mean square error oveL he population for which the

distribution of ability is specified by the prior (Bock &

Mislevy, 1982; Mislevy & Stocking, 1989).

Similarity Measures

Tw. statistics were used to measure a similarity of item and

ability parameter estimatioas of using two numerical analysis

techniques. one is the correlation between the parameters and

9
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the estimates of using the Gauss-Hermite quadrature formula and

the Mislevy's graphical solution. Another is the absolute

difference between the parameters and the estimates of using two

numerical analysis techniques.

IV. Results and Conclusions

Item Discrimination Estimates

The correlations and the average absolute difference for item

discrimination estimate were reported in Table 2 and Table 3.

[Insert Table 2 and Table 3 about here]

The correlations between the item discrimination parameters

and the estimates of using the Mislevy's graphical solution were

almost equal to those between the item discrimination parameters

and the estimates by using the Gauss-Hermite quadrature formula.

The average absolute difference of the item discrimination

estimates by using the Mislevy's histogram solution were smaller

than those by using the Causs-Hermite quadrature formula when the

number of quadrature points were small.

Item Difficulty Estimates

The correlations and the average absolute difference for item

difficulty estimate were reported in Table 4 and Table 5.

[Insert Table 4 and Table 5 about here]

The correlations between the item difficulty parameters and

the estimates by using the Mislevy's graphical solution were

exactly equal to those between the item difficulty parameters and

the estimates by using the Gauss-Hermite quadrature formula.
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When the number or quadrature points was ten, the average

absolute difference for the item difficulty estimates of using

the Mislevy's histogram solution was smaller than that of using

the Gauss-Hermite quadrature formu

Ability Estimates

The correlations and the average absolute difference for

ability estimate were reported in Table 6 and Table 7.

(Insert Table 6 and Table 7 about here]

When ten quadrature points were chosen, the correlation

between the ability parameters and the estimates of using the

Mislevy's histogram solution was larger than that of using the

Gauss-Hermite quadrature formula. The average absolute

difference for ability estimate of using the Mislevy's histogram

solution were smaller than those of using the Gauss-Hermite

quadrature formula when the number of quadrature points were ten

and twenty.

When the small number of quadrature points are specified,. the

Mislevy's histogram solution via MMLE approach estimates item and

ability parameters more accurately than the Gauss-Hermite

quadrature formula. The choice of numerical analysis technique

may not be an important consideration for item and ability

parameter estimations via MMLE when the large number of

quadrature points are chosen. When estimating item and ability

patameters via MMLE with small number of quadrature points, this

study suggests using the Mislevy' histogram solution rather than

the Gauss-Hermite quadrature formula.
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Table 1

Item Parameters of 45 Items

Item difficulty

-1.00 0.00

(0 )

+1.00 Total

.3 - .5 5 5 5 15
Item

discri. .6 .8

(m)
5 5 5 15

.9 -1.1 5 5 5 15

Total 15 15 15 45.
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Table 2

Correlations between the Item Discrimination Parameter and
the Estimates of Using the Gauss-Hermite Quadrature Formula
and the Mislevy's Histogram Solution.

Numerical Analysis Technique
Gauss-Hermite Mislevy's

10 .9E0 .981

Number of 20 .980 .981
Quadrature
Points 30 .981 .981

40 .981 .981

Table 3

Average Absolute difference for the Item Discrimination
Estimates of Using the Gauss-Hermite Quadrature Formula and
the Mislevy's Histogram Solution.

Numerical Analysis Technique
Gauss-Hermite Mislevy's

10 .067 .051

Number of 20 .039 .038
Quadrature
Points 30 .038 .038

40 .038 .038
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Table 4

Correlations between the Item Difficulty Parameters and
the Estimates of Using the Gauss-Hermite Quadrature Formula
and the Mislevy's Histogram Solution.

Numerical Analysis Technique
Gauss-Hermite Mislevy's

10 .992 .992

Number of 20 .992 .992
Quadrature
Points 30 .992 .992

40 .992 .992

Table 5

Average Absolute difference for the Item Difficulty
Estimates of Using the Gauss-Hermite Quadrature Formula and
the Mislevy's Histogram Solution.

Numerical Analysis Technique
Gauss-Hermite Mislevy's

10 .101 .086

Number of 20 .078 .078
Quadrature
Points 30 .078 .078

40 .078 .078
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Table 6

Correlations between the Item Ability Parameters anca the
Estimates of Using the Gauss-Hermite Quadrature Formula and
the Mislevy's Histogram Solution.

Numerical Analysis Technique
Gauss-Hermite Mislevy's

10 .951 .953

Number of 20 .957 .957
Quadrature
Points 30 .957 .957

40 .957 .957

Table 7

Average Absolute difference for the Ability Estimates of
Using the Gauss-Hermite Quadrature Formula and the Mislevy's
Histogram Solution.

Numerical Analysis Technique
Gauss-Hermite Mislevy's

10 .260 .248

Number of 20 .232 .230
Quadrature
Points 30 .230 .230

40 .230 .230
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